Два мира
Мир первый: Цена мандата зависит прежде всего от того, в каком представительном органе будет заседать кандидат.

Избрание в земское собрание или городскую думу — подешевле, в законодательное собрание, облдуму — дороже. Предел — Государственная дума России. Кресло в региональном парламенте может обойтись в 100–500 тысяч долларов. В зависимости от богатства региона и рейтинга партии, через которую покупается мандат, в этой территории. К примеру, место в региональном парламенте Республики Коми стоит чуть более ста тысяч долларов. По крайней мере, такую сумму назвал бывший член совета регионального отделения «Справедливой России» Валерий Козлов. Он недавно поднял скандал о коррупции в политике и был исключен из партии. По словам Козлова, нынешний руководитель партийной ячейки в Коми Вера Скоробогатова предложила ему место в выборном списке в Госсовет республики за 3 миллиона рублей наличными. Номер два в списке Госсовета Илья Величко уверяет: Козлов был куплен властью (себя сыктывкарский эсер мнит оппозицией) и распространяет клевету. «На самом деле Валерий Козлов сначала сам предложил Вере Игоревне пять миллионов рублей за место в партийном списке, — заявил Величко «Соли». — Но она отказала и не рассматривала его кандидатуру, поскольку он не работал на партию». Козлов, конечно, все отрицает.
Политолог Евгений Вологин, тоже, кстати, исключенный из состава «Справедливой России», уверен, что сыктывкарский скандал — лишь частный случай из общей практики. А практика такова: партии в регионах продают мандаты. Часть средств идет на продвижение во власть основного состава партактива. Они своего рода бюджетники. В пресс-службе федеральной «Справедливой России» говорят, что партия никогда не занималась продажей мандатов — ни на федеральном, ни на региональном уровне. «Сколько проплаченные провокаторы ни старались об этом говорить», — отметила представительница партии.
В партии ЛДПР тоже заявляют, что продажей мандатов никогда не занимались. По словам члена фракции ЛДПР в Госдуме Сергея Иванова, мерзавцы в политике есть и партия Жириновского с ними борется. В частности, говорит Иванов, ловко меняя тему разговора, ЛДПР настаивает на том, чтобы право распределения мандатов было за самими партиями. Сейчас в ЦИК подаются партсписки, места в органах власти получают первые фамилии. По мнению Иванова, следует подавать общий, а не иерархический список. Чтобы партия, получив на выборах какое-то количество мест, могла отправлять на депутатскую работу не только «паровозов», но вообще любого участника списка. Так влияния ЦИК, а значит, и коррупции будет меньше. «Если дать возможность партии самой распределять мандаты, количество «блатных» депутатов снизится в разы», — уверяет депутат Иванов.
Коллеги парламентария оценивают инициативу ЛДПР иначе: общий избирательный список превратит распределение мандатов в экономический и политический аукцион. То есть опять-таки: усилится партийная коррупция. То есть с одной стороны политики признают проблему «блатных» мандатов. А с другой — отрицают. Мол, сами мы с ней не сталкивались.
Пресс-секретарь ЛДПР Виктория Сотникова чеканит: «На вопрос «Сколько мы продали мандатов?» отвечу коротко: ЛДПР никогда не занималась продажей мандатов для наполнения бюджета партии, это такая же ложь, как и заявления о том, что наша партия пытается «легализовать торговлю мандатами».
Надо сказать, что представители всех парламентских партий отрицают связь своих партий с коррупцией. В КПРФ слухи о продаже коммунистами мандатов называют «провокацией». В «Единой России» по традиции предпочли отказаться от дебатов: «Руководитель пресс-службы не будет отвечать на этот вопрос», — сообщили в центральном исполкоме «Единой России».
Политолог Михаил Виноградов говорит, что по очевидным причинам ни одна партия никогда не объявит о торговле мандатами, несмотря на то, что это общая для всех практика. По его словам, механизм таков: за счет продажи депутатских кресел парторганизации пополняют свои бюджеты. «Сам депутатский мандат дает мало, в регионах он имеет декоративную функцию, — рассуждает Виноградов. — И основной спрос на мандаты в региональных парламентах идет от тех, кто просто хочет повысить свой статус». По мнению политолога, на цены влияют такие факторы, как престижность парламента, богатства региона, экономическая ситуация в стране и т. п. «Для регионального парламента 100–200 тысяч долларов — это нормальная цифра. Для Госдумы, разумеется, сумма больше. На думских выборах 2007 года среднюю сумму мандата оценивали в миллион долларов, но тогда была другая конъюнктура. Сколько будет стоить место в новую Госдуму, пока сказать сложно», — резюмирует политолог Виноградов. По его оценке, обычно в партсписках продается около 20 процентов проходных мест.Источник: online812.ru


Мир второй. Убитый. Сколько критических стрел было выпущено за последние годы по поводу состояния нашей вычислительной техники! И что была она безнадежно отсталой (при этом обязательно ввернут про "органические пороки социализма и плановой экономики"), и что сейчас развивать ее бессмысленно, потому что "мы отстали навсегда". И почти в каждом случае рассуждения будут сопровождаться выводом, что "западная техника всегда была лучше", что "русские компьютеры делать не умеют"...

Обычно, критикуя советские компьютеры, акцентируется внимание на их ненадежности, трудности в эксплуатации, малых возможностях. Да, многие программисты "со стажем" наверняка помнят те "зависающие" без конца "Е-Эс-ки" 70-80-х годов, могут рассказать о том, как выглядели "Искры", "Агаты", "Роботроны", "Электроники" на фоне только начавших появляться в Союзе IBM PC (даже и не последних моделей) в конце 80-х — начале 90-х, упомянув о том, что такое сравнение оканчивается отнюдь не в пользу отечественных компьютеров. И это так — указанные модели действительно уступали западным аналогам по своим характеристикам. Но эти перечисленные марки компьютеров отнюдь не являлись лучшими отечественными разработками, — несмотря на то, что были наиболее распространенными. И на самом деле советская электроника не только развивалась на мировом уровне, но и иной раз опережала аналогичную западную отрасль промышленности!
Но почему же тогда сейчас мы используем исключительно иностранное "железо", а в советское время даже с трудом "добытый" отечественный компьютер казался грудой металла по сравнению с западным аналогом? Не является ли утверждение о превосходстве советской электроники голословным? Нет, не является! Почему? Ответ — в этой статье.

Официальной "датой рождения" советской вычислительной техники следует считать, видимо, конец 1948 года. Именно тогда в секретной лаборатории в местечке Феофания под Киевом под руководством Сергея Александровича Лебедева (в то время — директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и вычислительной техники АН СССР) начались работы по созданию Малой Электронной Счетной Машины (МЭСМ). Лебедевым были выдвинуты, обоснованы и реализованы (независимо от Джона фон Неймана) принципы ЭВМ с хранимой в памяти программой.В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:
• наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
• кодирование и хранение программы в памяти, подобно числам;
• двоичная система счисления для кодирования чисел и команд;
• автоматическое выполнение вычислений на основе хранимой программы;
• наличие как арифметических, так и логических операций;
• иерархический принцип построения памяти;
• использование численных методов для реализации вычислений.

Проектирование, монтаж и отладка МЭСМ были выполнены в рекордно короткие сроки (примерно 2 года) и проведены силами всего 17 человек (12 научных сотрудников и 5 техников). Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, а регулярная эксплуатация — 25 декабря 1951 года.

Первое детище С.А.Лебедева - МЭСМ, За пультом Л.Н.Дашевский и С.Б.Погребинский, 1948-1951гг.
В 1953 году коллективом, возглавляемым С.А.Лебедевым, была создана первая большая ЭВМ — БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно — ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно — САМ). После комплектации оперативной памяти БЭСМ-1 усовершенствованной элементной базой ее быстродействие достигло 10000 операций в секунду — на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и было осуществлено в количестве нескольких десятков.
Параллельно шла работа в подмосковном Специальном конструкторском бюро № 245, которым руководил М.А.Лесечко, основанном также в декабре 1948 года приказом И.В.Сталина. В 1950-1953 гг. коллектив этого конструкторского бюро, но уже под руководством Базилевского Ю.Я. разработал цифровую вычислительную машину общего назначения "Стрела" с быстродействием в 2 тысячи операций в секунду. Эта машина выпускалась до 1956 года, а всего было сделано 7 экземпляров. Таким образом, "Стрела" была первой промышленной ЭВМ, — МЭСМ, БЭСМ существовали в то время всего в одном экземпляре.
Вообще, конец 1948 года был крайне продуктивным временем для создателей первых советских компьютеров. Несмотря на то, что обе упомянутые выше ЭВМ были одними из лучших в мире, опять-таки параллельно с ними развивалась еще одна ветвь советского компьютеростроения — М-1, "Автоматическая цифровая вычислительная машина", которой руководил И.С.Брук.

М-1 была запущена в декабре 1951 года — одновременно с МЭСМ и почти два года была единственной в СССР действующей ЭВМ (МЭСМ территориально располагалась на Украине, под Киевом). Однако быстродействие М-1 оказалось крайне низким — всего 20 операций в секунду, что, впрочем, не помешало решать на ней задачи ядерных исследований в институте И. В. Курчатова. Вместе с тем М-1 занимала довольно мало места — всего 9 квадратных метров (сравните со 100 кв.м. у БЭСМ-1) и потребляла значительно меньше энергии, чем детище Лебедева. М-1 стала родоначальником целого класса "малых ЭВМ", сторонником которых был ее создатель И.С.Брук. Такие машины, по мысли Брука, должны были предназначаться для небольших конструкторских бюро и научных организаций, не имеющих средств и помещений для приобретения машин типа БЭСМ.

В скором времени М-1 была серьезно усовершенствована, и ее быстродействие достигло уровня "Стрелы" — 2 тысячи операций в секунду, в то же время размеры и энергопотребление выросли незначительно. Новая машина получила закономерное название М-2 и введена в эксплуатацию в 1953 году. По соотношению стоимости, размеров и производительности М-2 стала наилучшим компьютером Союза. Именно М-2 победила в первом международном шахматном турнире между компьютерами.

В результате в 1953 году серьезные вычислительные задачи для нужд обороны страны, науки и народного хозяйства можно было решать на трех типах вычислительных машин — БЭСМ, "Стрела" и М-2. Все эти ЭВМ — это вычислительная техника первого поколения. Элементная база — электронные лампы — определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ ("арифметико-логическое устройство", блок, непосредственно выполняющий преобразования данных) простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.
Сетунь — первая и единственная в мире троичная ЭВМ. МГУ. СССР. Завод-изготовитель: Казанский завод математических машин Минрадиопрома СССР. Изготовитель логических элементов — Астраханский завод электронной аппаратуры и электронных приборов Минрадиопрома СССР. Изготовитель магнитных барабанов — Пензенский завод ЭВМ Минрадиопрома СССР. Изготовитель печатающего устройства — Московский завод пишущих машин Минприборпрома СССР. Год окончания разработки: 1959. Год начала выпуска: 1961. Год прекращения выпуска: 1965. Число выпущенных машин: 50.

В наше время «Сетунь» не имеет аналогов, но исторически сложилось, что развитие информатики ушло в русло двоичной логики. На Западе дело в то время обстояло не слишком лучше. Вот пример из воспоминаний академика Н.Н.Моисеева, ознакомившегося с опытом своих коллег из США: "Я увидел, что в технике мы практически не проигрываем: те же самые ламповые вычислительные монстры, те же бесконечные сбои, те же маги-инженеры в белых халатах, которые исправляют поломки, и мудрые математики, которые пытаются выйти из трудных положений." Напомним, что в 1953 г. в США был выпущен компьютер IBM 701 с быстродействием до 15 тысяч операций в секунду, построенный на электронно-вакуумных лампах, бывший наиболее производительным в мире.

Но более производительной была следующая разработка Лебедева — ЭВМ М-20, серийный выпуск которой начался в 1959 году.

Число 20 в названии означает быстродействие — 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из наиболее мощных и надежных машин в мире, и на ней решалось немало важнейших теоретических и прикладных задач науки и техники того времени. В машине М20 были реализованы возможности написания программ в мнемокодах. Это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники. По иронии судьбы компьютеров М-20 было выпущено ровно 20 штук. ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ "Урал-4", служившая для экономических расчетов.

В 1948 году в США был изобретен полупроводниковый транзистор, который стал использоваться в качестве элементной базы ЭВМ. Это позволило разработать ЭВМ с существенно меньших габаритов, энергопотребления, при существенно более высокой (по сравнению с ламповыми компьютерами) надежности и производительности. Чрезвычайно актуальной стала задача автоматизации программирования, так как разрыв между временем на разработку программ и временем собственно расчета увеличивался.
Второй этап развития вычислительной техники конца 50-х — начала 60-х годов характеризуется созданием развитых языков программирования (Алгол, Фортран, Кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Первые ОС автоматизировали работу пользователя по выполнению задания, а затем были созданы средства ввода нескольких заданий сразу (пакета заданий) и распределения между ними вычислительных ресурсов. Появился мультипрограммный режим обработки данных. Наиболее характерные черты этих ЭВМ, обычно называемых "ЭВМ второго поколения":
совмещение операций ввода/вывода с вычислениями в центральном процессоре;
увеличение объема оперативной и внешней памяти;
использование алфавитно-цифровых устройств для ввода/вывода данных;
"закрытый" режим для пользователей: программист уже не допускался в машинный зал, а сдавал программу на алгоритмическом языке (языке высокого уровня) оператору для ее дальнейшего пропуска на машине.
В конце 50-х годов в СССР было также налажено серийное производство транзисторов.

Это позволило приступить к созданию ЭВМ второго поколения с большей производительностью, но меньшими занимаемой площадью и энергопотреблением. Развитие вычислительной техники в Союзе пошло едва ли не "взрывными" темпами: в короткий срок число различных моделей ЭВМ, пущенных в разработку, стало исчисляться десятками: это и М-220 — наследница лебедевской М-20, и "Минск-2" с последующими версиями, и ереванская "Наири", и множество ЭВМ военного назначения — М-40 с быстродействием 40 тысяч операций в секунду и М-50 (еще имевшие в себе ламповые компоненты). Именно благодаря последним в 1961 году удалось создать полностью работоспособную систему противоракетной обороны (во время испытаний неоднократно удалось сбить реальные баллистические ракеты прямым попаданием в боеголовку обьемом в половину кубического метра). Но в первую очередь хотелось бы упомянуть серию "БЭСМ", разрабатываемую коллективом разработчиков ИТМ и ВТ АН СССР под общим руководством С.А.Лебедева, вершиной труда которых стала ЭВМ БЭСМ-6 созданная в 1967 году. Это была первая советская ЭВМ, достигшая быстродействия в 1 миллион операций в секунду (показатель, превзойденный отечественными ЭВМ последующих выпусков только в начале 80-х годов при значительно более низкой, чем у БЭСМ-6, надежности в эксплуатации).

Кроме высокого быстродействия (лучший показатель в Европе и один из лучших в мире), структурная организация БЭСМ-6 отличалась целым рядом особенностей, революционных для своего времени и предвосхитивших архитектурные особенности ЭВМ следующего поколения (элементную базу которых составляли интегральные схемы). Так, впервые в отечественной практике и полностью независимо от зарубежных ЭВМ был широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд".
БЭСМ-6 выпускалась серийно на московском заводе САМ с 1968 по 1987 год (всего было выпущено 355 машин) — своего рода рекорд! Последняя БЭСМ-6 была демонтирована уже в наши дни — в 1995 году на московском вертолетном заводе Миля. БЭСМ-6 были оснащены крупнейшие академические (например, Вычислительный Центр АН СССР, Обьединенный Институт Ядерных Исследований) и отраслевые (Центральный Институт Авиационного Машиностроения — ЦИАМ) научно-исследовательские институты, заводы и конструкторские бюро.
Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны". Полный ее текст (на ангийском языке) доступен по адресу Http://inc.com/incmagazine/ archiv...
Информация для специалистов Работа модулей оперативной памяти, устройства управления и арифметико-логического устройства в БЭСМ-6 осуществлялась параллельно и асинхронно, благодаря наличию буферных устройств промежуточного хранения команд и данных. Для ускорения конвейерного выполнения команд в устройстве управления были предусмотрены отдельная регистровая память хранения индексов, отдельный модуль адресной арифметики, обеспечивающий быструю модификацию адресов с помощью индекс-регистров, включая режим стекового обращения.
Ассоциативная память на быстрых регистрах (типа cache) позволяла автоматически сохранять в ней наиболее часто используемые операнды и тем самым сократить число обращений к оперативной памяти. "Расслоение" оперативной памяти обеспечивало возможность одновременного обращения к разным ее модулям из разных устройств машины. Механизмы прерывания, защиты памяти, преобразования виртуальных адресов в физические и привилегированный режим работы для ОС позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. В арифметико-логическом устройстве были реализованы ускоренные алгоритмы умножения и деления (умножение на четыре цифры множителя, вычисление четырех цифр частного за один такт синхронизации), а также сумматор без цепей сквозного переноса, представляющий результат операции в виде двухрядного кода (поразрядных сумм и переносов) и оперирующий с входным трехрядным кодом (новый операнд и двухрядный результат предыдущей операции).
ЭВМ БЭСМ-6 имела оперативную память на ферритовых сердечниках — 32 Кб 50-разрядных слов, объем оперативной памяти увеличивался при последующих модификациях до 128 Кб. Обмен данными с внешней памятью на магнитных барабанах (в дальнейшем и на магнитных дисках) и магнитных лентах осуществлялся параллельно по семи высокоскоростным каналам (прообраз будущих селекторных каналов). Работа с остальными периферийными устройствами (поэлементный ввод/вывод данных) осуществлялась программами-драйверами операционной системы при возникновении соответствующих прерываний от устройств.
Технико-эксплуатационные характеристики:
Среднее быстродействие — до 1 млн. одноадресных команд/с
Длина слова — 48 двоичных разрядов и два контрольных разряда (четность всего слова должна была быть "нечет". Таким образом, можно было отличать команды от данных — у одних четность полуслов была "чет-нечет", а у других — "нечет-чет". Переход на данные или затирание кода ловилось элементарно, как только происходила попытка выполнить слово с данными)
Представление чисел — с плавающей запятой
Рабочая частота — 10 МГц
Занимаемая площадь — 150-200 кв. м
Потребляемая мощность от сети 220 В/50Гц — 30 КВт (без системы воздушного охлаждения)
БЭСМ-6 имела оригинальную систему элементов с парафазной синхронизацией. Высокая тактовая частота элементов потребовала от разработчиков новых оригинальных конструктивных решений для сокращения длин соединений элементов и уменьшения паразитных емкостей.
Использование этих элементов в сочетании с оригинальными структурными решениями позволило обеспечить уровень производительности до 1 млн. операций в секудну при работе в 48-разрядном режиме с плавающей запятой, что является рекордным по отношению к сравнительно небольшому количеству полупроводниковых элементов и их быстродействию (около 60 тыс. транзисторов и 180 тыс. диодов и частоте 10 МГц ).
Архитектура БЭСМ-6 характеризуется оптимальным набором арифметических и логических операций, быстрой модификацией адресов с помощью индекс-регистров (включая режим стекового обращения), механизмом расширения кода операций (экстракоды).
При создании БЭСМ-6 были заложены основные принципы системы автоматизации проектирования ЭВМ (САПР). Компактная запись схем машины формулами булевой алгебры явилась основой ее эксплуатационной и наладочной документации. Документация для монтажа выдавалась на завод в виде таблиц, полученных на инструментальной ЭВМ. Создателями БЭСМ-6 были В.А.Мельников, Л.Н.Королев, В.С.Петров, Л.А.Теплицкий — руководители; А.А.Соколов, В.Н.Лаут, М.В.Тяпкин, В.Л.Ли, Л.А.Зак, В.И.Смирнов, А.С.Федоров, О.К.Щербаков, А.В.Аваев, В.Я.Алексеев, О.А.Большаков, В.Ф.Жиров, В.А.Жуковский, Ю.И.Митропольский, Ю.Н.Знаменский, В.С.Чехлов, общее руководство осуществлял С.А.Лебедев.
В 1966 году над Москвой была развернута система противоракетной обороны на базе созданной группами С.А.Лебедева и его коллеги В.С.Бурцева ЭВМ 5Э92б с производительностью 500 тысяч операций в секунду, просуществовавшая до настоящего времени (в 2002 году должна быть демонтирована в связи с сокращением РВСН).

Вероятно, самым звездным периодом в истории советской вычислительной техники была середина шестидесятых годов. В СССР тогда действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова — только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. Одновременно выпускалось множество различных типов машин, чаще всего несовместимых друг с другом (разве что за исключением машин, разработанных в одном и том же институте), самого разнообразного назначения. Все они были спроектированы и сделаны на мировом уровне и не уступали своим западным конкурентам.
Многообразие выпускавшихся ЭВМ и их несовместимость друг с другом на программном и аппаратном уровнях не удовлетворяло их создателей. Необходимо было навести мало-мальский порядок во всем множестве производимых компьютеров, например, взяв какой-либо из них за некий стандарт. Но... В конце 60-х руководством страны было принято решение, имевшее, как показал ход дальнейших событий, катастрофические последствия: о замене всех разнокалиберных отечественных разработок среднего класса (их насчитывалось с полдесятка — "Мински", "Уралы", разные варианты архитектуры М-20 и пр.) — на Единое Семейство ЭВМ на базе архитектуры IBM 360, — американского аналога. На уровне Минприбора не так громко было принято аналогичное решение в отношении мини-ЭВМ. Потом, во второй половине 70-х годов, в качестве генеральной линии для мини- и микро-ЭВМ была утверждена архитектура PDP-11 также иностранной фирмы DEC. В результате производители отечественных ЭВМ были принуждены копировать устаревшие образцы IBM-вской вычислительной техники. Это было начало конца.
Вот оценка члена-корреспондента РАН Бориса Арташесовича Бабаяна (полный текст статьи доступен с адреса znanie-sila.ru/ online/issu...): "Потом наступил второй период, когда был организован ВНИИЦЭВТ. Я считаю, что это критический этап развития отечественной вычислительной техники. Были расформированы все творческие коллективы, закрыты конкурентные разработки и принято решение всех загнать в одно "стойло". Отныне все должны были копировать американскую технику, причем отнюдь не самую совершенную. Гигантский коллектив ВНИИЦЭВТ копировал IBM, а коллектив ИНЭУМ — DEC." Никоим образом не стоит думать, что коллективы разработчиков ЕС ЭВМ выполняли свою работу плохо. Напротив, создавая вполне работоспособные компьютеры (хоть и не очень надежные и мощные), подобные западным аналогам, они справились с этой задачей блестяще, — учитывая то, что производственная база в СССР отставала от западной. Ошибочной была именно ориентация всей отрасли на "подражание Западу", а не на развитие оригинальных технологий. К сожалению, сейчас неизвестно, кто конкретно в руководстве страны принял преступное решение о сворачивании оригинальных отечественных разработок и развитии электроники в направлении копирования западных аналогов. Обьективных причин для такого решения не было никаких. Источник